Roman Karlstetter von IFTA präsentiert sein Paper "Querying Distributed Sensor Streams in the Edge-to-Cloud Continuum" auf der Forschungskonferenz IEEE EDGE 2022 in Barcelona. 14. Juli, 2022, 10:45 - 12:00 Uhr, UPC Terrassa Campus, Raum 10, EDG_SHT_014
Das Paper von Roman Karlstetter, Robert Widhopf-Fenk und Martin Schulz ist eine gemeinsame Arbeit der IFTA und des CAPS Lehrstuhls der TUM School of Computation, Information and Technology und schlägt einen Ansatz zum Abruf von Sensordaten aus geographisch verteilten Verarbeitungs- und Speicherknoten vor. Das Team arbeitet gemeinsam an einem Sensorspeicher-Framework im Rahmen des sogenannten SensE-Projektes.
Mehr Informationen zum Projekt SensE
Mehr Informationen zum Programm der IEEE EDGE 2022 in Barcelona
Zur Registrierung IEEE EDGE 2022
Abstract of the paper:
Sensor data is of crucial importance in many IoT scenarios. It is used for online monitoring as well as long term data analytics, enabling countless use cases from damage prevention to predictive maintenance. Multivariate sensor time series data is acquired and initially stored close to the sensor, at the edge. It is also beneficial to summarize this data in
windowed aggregations at different resolutions. A subset of the resulting aggregation hierarchy is typically sent to a fog or cloud infrastructure, often via intermittent or low bandwidth connections. Consequently, different views on the data exist on different nodes in the edge-to-cloud continuum. However, when querying this data, users are interested in a fast response and a complete, unified view on the data, regardless of which part in the infrastructure continuum they send the query to and where the data is physically stored.
In this paper, we present a loosely coupled approach that enables fast range queries on a distributed and hierarchical sensor database. Our system only assumes the possibility of fast local range queries on a hierarchical sensor database. It does not require any shared state between nodes and thus degrades gracefully in case certain parts of the hierarchy
are unreachable.
We show that our system is suitable for driving interactive data exploration sessions on terabytes of data while unifying the different views on the data. Thus, our system can improve the data analysis experience in many geo-distributed scenarios.
The work is partly sponsored by Bayrische Forschungs-Stiftung