Proceedings of ASME Turbo Expo 2019

Turbomachinery Technical Conference and Exposition

GT2019
June 17-21, 2019, Phoenix, Arizona, USA

GT2019-91259

TURNING DYNAMIC SENSOR MEASUREMENTS FROM GAS TURBINES INTO
INSIGHTS: A BIG DATA APPROACH

Roman Karlstetter*
Robert Widhopf-Fenk
Jakob Hermann
Driek Rouwenhorst
IfTA GmbH
IfTA Ingenieurblro fiir Thermoakustik GmbH
82194 Grobenzell, Germany

Email: roman.karlstetter@ifta.com

ABSTRACT

Gas turbine power plants generate an ever growing amount
of high frequency dynamic sensor data. One of the applications
of this data is the protection against problems induced by com-
bustion dynamics, as, e.g., with the ArgusOMDS system devel-
oped by IfTA. In the light of digitalization, this data has the po-
tential to also be used in other areas and ultimately transform
maintenance, repair and overhaul approaches. However, cur-
rent solutions are not designed to cope with the large time win-
dows needed for a general analysis and this can hinder devel-
opment of advanced machine analysis algorithms. In this work,
we present an end-to-end approach for large scale sensor mea-
surement analysis, employing data mining techniques and en-
abling machine learning algorithms. Our approach covers the
complete data pipeline from sensor measurement acquisition to
analysis and visualization. We demonstrate the feasibility of our
approach by presenting several case studies that prove the bene-
fits over existing solutions.

1 INTRODUCTION

A large number of gas-fired power plants provide the back-
bone for varying power demands worldwide. In the context of
regenerative power production they are key to stabilizing power

*Address all correspondence to this author.

Amir Raoofy
Carsten Trinitis
Martin Schulz
Department of Informatics
Chair for Computer Architecture and Parallel Systems
Technical University of Munich
85748 Garching, Germany

grids. This is particularly critical for the European energy market
and the increased need for flexibility in the energy supply. With
their ability to quickly adapt the power generation to the elec-
tricity demand over a broad load range, gas turbines are there-
fore highly competitive. However, this flexibility comes at a
cost: power plants are no longer continuously operated at base
load, requiring adaptive tuning, and they are increasingly prone
to combustion dynamics. To monitor and actively counteract
these combustion dynamics, power plants are typically highly
instrumented and monitored through a variety of different—in
many cases independent—systems with sampling rates from one
to several ten thousand Hz.

Consequently, the generated data volumes vary significantly
(few MBs/day of operating data vs. many GBs/day for rotor and
combustion dynamics sensor data) posing different processing
requirements. Current approaches often only transfer operating
and summarized combustion dynamics data to the cloud, con-
stituting a significant loss of information. This design decision,
though, is driven by the fact that when managing a complete fleet
of gas turbines, even storing this reduced data set is already chal-
lenging. Expanding this concept to non-aggregated data or to in-
clude high frequency data typically makes transfer, storage, and
analysis infeasible.

Despite the challenges, this data, covering a detailed state of
the machine during its entire operation, has great potential to aid

Copyright © 2019 by ASME

roman.karlstetter@ifta.com

in a deeper understanding and further optimization and improved
operation of gas turbines. Understanding how machines and ma-
chine behavior change over seasons, over lifetimes or how they
differ within a fleet of identical machines is crucial for detect-
ing problems early and avoiding unplanned standstills. This also
makes it possible to identify problematic machines or machine
components and helps to keep focus on improving the relevant
assets. Similar to approaches in an increasing share of indus-
tries, it can also enable better maintenance strategies. This means
that a transition from “run to failure” to ”condition-based main-
tenance”, where maintenance intervals are scheduled according
to the actual state of the machine, is possible. Finally, it can help
in the development of new generations of gas turbines by under-
standing issues of older designs.

In this paper, we discuss the challenges and requirements for
an end-to-end solution of large scale sensor measurement anal-
ysis and present an architecture that enables such analysis in a
real-world installation. After a detailed discussion of the chal-
lenges in Section 2, we scope our problem to a real-life case
study in Section 3 and present theoretical concepts and appli-
cation requirements regarding data storage in Section 4. In Sec-
tion 5, we present an analysis architecture and highlight the com-
ponents of our solution. After that, in Section 6, we compare our
solution with existing approaches before we demonstrate the su-
periority of our approach by means of selected examples. Sec-
tion 7 sketches ideas and challenges on how data analysis might
be further automatized. We wrap up with conclusions and possi-
ble future work in Section 8.

2 DATA PIPELINE CHALLENGES

The instrumentation of today’s gas turbines produces vast
amounts of sensor measurements combined with a wide array of
control information. Access to such data in its entirety, in order
to enable advanced analysis techniques spanning all data sources
as well as long time ranges, leads to several key challenges that
must be tackled when developing a big data analysis platform
for gas turbine sensor measurements. Moreover, such a platform
must consider the entire data pipeline from the sensor data ac-
quisition, to data storage and transmission, to security aspects as
well as the required analysis interpretation skills.

2.1 Data Storage

Heavy duty gas turbines are equipped with a variety of dif-
ferent sensors to monitor and control their operation. For mon-
itoring the combustion process of a typical can-type gas turbine
with 14 cans/baskets, a pressure sensor is usually installed in
each basket, and the dynamic pressure is sampled at a frequency
of around 25 kHz in order to be able to observe high-frequency
phenomena.

Assuming a sampling frequency of 25.6 kHz, as given in our

use case, every day one machine produces

I Byt GByt
SAMPEES 4 2V 86400 2~ 124 —YC

14 x 25600
8 sec sample day day

of single precision floating point (32-Bit) raw sensor sample data
alone.

Systems like IfTA’s ArgusOMDS [1] provide such high res-
olution sensor capabilities. As they are installed in hundreds of
power plants around the world, it makes it potentially possible
to monitor a complete fleet of turbines. Together with analysis
results and other operational data, like electrical power output,
static pressures and temperatures, the data volume quickly be-
comes intractable (an estimated 12 PB of high resolution data per
year) to manage using conventional and existing data pipelines,
even only considering a single turbine, let alone a fleet of tur-
bines.

The current state-of-the-art solution for handling this kind
of high frequency sensor data is to consider only a limited time
window. Data is stored directly at the power plant, managed in a
ring buffer and contains only the most recent measurement val-
ues. As a consequence—depending on the analysis settings and
how many sensors are installed for a machine—at most only few
weeks of turbine data can be stored in full resolution on site us-
ing this approach. As processing resources are currently very
limited at plant sites, no advanced data analytics can take place,
losing valuable opportunities for turbine behavioral observation
and analysis.

2.2 Data Transfer

In a perfect world all data should be transferred to and be
accessible from some kind of compute cloud. This would en-
able correlation and comparison between machines of a fleet as
all data from all the different turbines could be accessed from a
single access point. Additionally, making use of the full resolu-
tion data requires an environment with less resource constraints,
and—aside from a dedicated HPC center, which is not realistic
for this sector—only cloud based solutions are able to meet these
demands.

However, this vision is currently limited by technical con-
straints: In order to transfer the 124 GBytes/day from the exam-
ple above, a dedicated and sustained connection speed of at least
~ 11.5 MBit/s per turbine would be required. While connection
bandwidths are generally increasing, many power plants do not
have sufficient bandwidth capacity to transfer all the data to a
centralized cloud server, and only a small fraction of plants can
provide the necessary bandwidth.

For that reason, to monitor and compare data from differ-
ent machines, currently only a tiny fraction of sub-sampled and
aggregated analysis results is transferred to the cloud. Conse-

Copyright © 2019 by ASME

quently, the insights this reduced dataset can provide are natu-
rally very limited.

2.3 Security Considerations

In addition to data storage and transfer related problems, we
also want to touch on challenges concerning data security when
working with big data analytics in an industrial setting. Power
plants are critical infrastructure and thus are subject to higher
computer security requirements when compared to other appli-
cations. As long as no network connections to the outside of
the power plant are allowed, physical access restrictions are a
very effective measure against most security problems. How-
ever, once data analytics applications are deployed in some sort
of compute and storage cloud, network and application security
aspects have to be considered.

First, the plant network itself and incoming connections
need to be secured against unauthorized access. Next, when
measurement data are transferred to the cloud, the data should
be secured against eavesdropping as well as unauthorized modi-
fication. The same security concerns still apply once the data is
stored in a data center — it should not be possible for unautho-
rized parties to modify or access the data. Additionally, many of
the challenges in this area are not only technical, but also moti-
vated by trust issues towards data center operators. Solutions in
this area are widely researched topics and are generally orthog-
onal to the design of the data pipeline, as long as all individual
segments of the pipeline can be secured. A detailed discussion
would therefore go beyond the scope of this paper.

2.4 Required Technical Expertise

The deployment of data processing and analytics faces sev-
eral non-technical hurdles, which also comprises technical ex-
pertise for analyzing the data. As we will present in the remain-
der of this paper, a vast amount of sensor data is already be-
ing collected, for which we have developed solutions for storing
and analyzing. Within this context, knowledge in computer sci-
ence, statistics and, most importantly, the application domain, is
of crucial importance. Data mining promises to extract hidden,
unknown, but potentially valuable information from big data, but
initially and naively often only exposes straightforward correla-
tions, which are trivially known by gas turbine engineers, but not
computer scientists lacking the required application knowledge.
Finding new insight, though, is comparable to finding a needle
in a haystack and ultimately requires the hidden knowledge and
intuition of engineers and turbine customers alike when analyz-
ing the data. Only this will allow us to meet the promises of big
data, but also requires a framework that is a) easy to use also
by non computer scientists, b) is powerful enough to go beyond
simple correlations, and c) provides the needed interactivity to
allow engineers to explore data in the search for insights.

3 APPROACH AND SETUP

In this work, we present a workflow specifically designed
for the scenario of gas turbines and that creates a complete end-
to-end pipeline capable of guiding the user from data acquisition
to visualization and final analysis. Our work is based on a real-
world production setting: We acquire and analyze data from two
gas turbines from Stadtwerke Miinchen (SWM), the municipal
power supplier in the city of Munich, Germany. The data ac-
quisition is performed by IfTA’s ArgusOMDS system [1], which
is installed on both turbines. Each instance captures measure-
ment values of 14 high frequency pressure sensors at 25.6 kHz
and transforms this data into spectral information. Several other
systems provide over 100 additional low frequency signals at
roughly 2 Hz, which are integrated into the final sensor measure-
ment stream. These signals measure operating data like static
pressures, temperatures, valve positions, electrical power output,
etc.

Due to technical constraints, the acquired data cannot be
streamed over the Internet into the cloud for further processing.
We therefore transfer all sensor measurement data via external
hard disks, which are exchanged at the power plant in regular in-
tervals and then carried physically to both IfTA and TU Munich
for analysis. As a side effect, this approach not only solves all
data transfer challenges, but also addresses all security concerns,
as the disks can be physically protected. Once stored on the anal-
ysis servers, the data is protected by state-of-the-art firewall and
identity management procedures.

While this approach addresses all issues for our current
framework presented in this work and enables us to offer an
end-to-end pipeline, it, of course, does not scale to deployments
where we want to monitor a complete fleet of gas turbines. How-
ever, as discussed above, the data transfer challenges are orthog-
onal, and any solution can be merged into the framework dis-
cussed here without loss of generality.

4 STORAGE CONCEPTS

The first question in the design of an analysis platform is
how to store the acquired data in a form that supports and simpli-
fies additional data analysis, including machine learning. Central
to an answer is the fact that (almost exclusively) we are dealing
with time series data. This means that all data points are elements
of a signal that varies over time and has a timestamp associated
with each new value (see Fig. 1). The timestamps for these sig-
nals might either be sampled at regular intervals (e.g., exactly
25.6 kHz), but they also might be sampled at irregular time inter-
vals.

Each sensor produces a stream of raw samples. Further, ad-
ditional analysis algorithms produce derived signals, e.g., peak-
to-peak, RMS, spectrum, frequency band values, etc. The data
can be thought of as a table where each column is a signal and
each row a specific point in time with its related signal values

Copyright © 2019 by ASME

10 |Ato|Bto Cto| t1 At

W
o
3
>
-]

Btn Ctn

3

o t1 [~ tn |A0/At17 -~ |AtnBto|Bt1 - - -|Bin Cto Ct1 - - -Cin

FIGURE 1.

form: for each time stamp, there is a value for each signal.

Left) Sensor measurement time series data in tabular

Top-right) Row-oriented storage. Values are grouped by time stamp.
This provides optimal efficiency for writing data to persistent storage.
Bottom-right) Column-oriented storage. Values are grouped by signal.
This is optimal for sequential reading of a single signal.

(see Fig. 1 left). Writing this data stream row by row to persistent
storage is very efficient, as the necessary memory requirements
are very small and disk-based hard-drives handle the resulting
sequential writes very efficiently. In the resulting row-oriented
storage scheme, the signals are interleaved within the stream (de-
picted in Fig. 1 top-right).

Once the data is stored permanently, the ability to access the
data in the time series efficiently is crucial for any further pro-
cessing pipeline. In virtually all of the analysis and visualization
cases, when a certain signal value is needed, its preceding and
following values are also required. On the other hand, typically
only a subset of signals is required for a specific analysis. These
considerations make it obvious that for analysis workloads, the
data should be stored in a way that sequential reads of a single
signal can be executed efficiently. This can be achieved by using
a column-oriented storage scheme as illustrated in Fig. 1 bottom-
right, where all values of one signal are stored consecutively on
persistent storage.

Unfortunately, the downside of the scenario described above
is that, while reading is efficient, writing of the data in a column-
oriented format is problematic and will lead to reduced effi-
ciency. More generally, writing of streamed sensor measure-
ments and efficient reading of a single signal for data analysis
are contradictory. One of the main reasons why large scale ma-
chine analysis so far has been time consuming, is indeed the lack
of a storage format that has been designed for efficient writing
and reading. We will describe how we deal with this conflict in
the data processing pipeline in Section 5.

Another aspect related to data storage is data compression.
Here, three optimization targets conflict with each other: com-
pression efficiency (the amount of disk space that is needed to
store a given sequence of values) as well as compression and
decompression throughput (how much time it takes to compress
or decompress a certain amount of data). Researching and de-
veloping compression algorithms for sensor measurement time
series data is a research topic in its own right [2], and hence we

only touch the surface of the challenges here. It is important to
recognize that there is a hard real time requirement on the com-
pression throughput in a production deployment, i.e., data must
be compressed at least as fast as it is produced. For the other two
aspects (compression ratio and decompression rate) a satisfying
trade-off has to be determined. For the case of offline data anal-
ysis, data is usually written just once but read often. The conflict
here is between compression ratio and read throughput, i.e., de-
compressing the data should not limit the speed of accessing it.

The logical data organization (cf. Fig. 1) also has an impact
on the performance of data compression. In the case of sensor
measurement time series, data stored in a column-oriented layout
has consecutive data values that are similar to each other, so the
information entropy is smaller and thus, a higher compression
efficiency can be achieved.

All the above-mentioned considerations apply to both loss-
less as well as lossy compression algorithms. For lossy compres-
sion, the tolerated amount of information loss is another factor
that has to be considered. Typically, the compression ratio can be
improved by allowing a higher information loss. In addition to
that, application specific lossy compression algorithms generally
achieve much higher compression ratios, as they exploit domain
knowledge that is embedded in the compression algorithm.

A less technical aspect for storing data is the type of storage
system itself and the ecosystem around it. One option is a full
database system with integrated query handling and efficient data
ingestion and automatic deletion of old data. Some of these tools
also feature built-in data analysis capabilities. On the other hand,
data can be manually organized in files, avoiding the overhead of
a database system, but consequently also lacking its features. In
that case, the entire file management must be done manually, in-
cluding the deletion of files containing old time windows, which
cannot be stored infinitely due to limitations for storage capacity
and cost.

Data analysis tools can be selected independently, provided
that these tools are able to read the data format. Additionally and
according to Gorenflo et al. [3], besides the raw performance of a
potential storage and analysis system, having a good ecosystem
around it is equally crucial.

5 CREATING AN END-TO-END WORK FLOW

Based on the observations and requirements discussed
above, we have designed an end-to-end data pipeline that pro-
vides the necessary foundation to turn acquired measurement
data into insights for the operator. The most important parts of
the resulting analysis data flow are sketched in Fig. 2 and de-
scribed in more detail below.

Copyright © 2019 by ASME

Storage System Data Selection Visualization

eQ

matpltlib

Data Analysis

= MPI =
>>> Sp Qﬁg r Spoﬁ'(\z ’

FIGURE 2. Prototype of analysis data flow: data is stored in Apache
Parquet files (on a NAS-server). Using a Jupyter Notebook, it is loaded
and filtered by Apache Spark or pandas and further processed with these
tools. There, data mining algorithms are applied and the results are
visualized via matplotlib, seaborn, ipyvolume or other frameworks.

5.1 Data Acquisition and Storage

Sensor measurement and analysis result data is generated
by the IfTA ArgusOMDS System [1], located directly within the
power plant. In order to avoid data bandwidth and security is-
sues, this data is transferred to our storage system using external
hard-disks that are physically delivered by mail. Shipping an
8 TB hard disk provides higher bandwidth compared to the up-
load speed of a standard VDSL connection. The induced latency,
however, is extremely poor, i.e., we get new data only every cou-
ple of weeks, which is acceptable when building a first prototype.
The data on these external disks is stored in a row-oriented stor-
age format, which is unsuitable for data analysis workloads, and
we therefore convert it into a column oriented format.

5.1.1 Data Storage We aim at storing all data in a
column-oriented format!, so we first investigate two potential
tools that can be used for storing data.

First, we looked at schema-less storage solutions. InfluxDB
[4] ”is a time series database designed to handle high write and
query loads” and it has many features that meet our requirements.
It features automatic compression of values and timestamps, is
optimized for append-only workloads (stream processing) and
can automatically delete old values. Unfortunately, there are lim-
itations and issues of InfluxDB that make adoption for our use-
case harder. First of all, it only provides limited support for dif-
ferent data types, especially no support for 32 bit floating point
values. In addition to this, as the InfluxDB storage engine is
schema-less, we cannot exploit the data we are dealing with fol-
lows a specified schema. This also means that the time column
is unnecessarily duplicated and cannot be queried on its own.

! Another alternative optimized for storing time series data, TimescaleDB, is a
solution based on PostgresQL, thus implementing a row-oriented storage format.
A short test showed that not only does this solution have worse write and read
performance, but the data also consumes more disk storage space than with the
solutions presented here, so it is not considered in this paper.

Measurement type | Size on Disk Actual Size Ratio
14321 MB 3458.1MB 41.4%
52 MB 338MB 155 %

Dynamic data

Operating data

TABLE 1. Comparison of compressed data size on disk and actual
data size when loaded in memory. The sizes on disk represent the size
of Parquet files with dictionary compression, containing dynamic or op-
erating data for one day.

Second, we investigated schema-driven storage options. In
particular, we examined a file-based approach using the Apache
Parquet file format [5]. Apache Parquet "is a columnar storage
format available to any project in the Hadoop ecosystem, regard-
less of the choice of data processing framework, data model or
programming language” [5]. It is an open source implementation
of the ideas from Melnik et al. [6] and is also compatible with
processing frameworks in the Python data processing ecosys-
tem. It exploits a predefined schema and has built-in support
for different compression algorithms. Thus, it supports fast se-
quential reading of individual signals, can filter data using simple
statistics on the columns and uses the available storage space ef-
ficiently. One of the main drawbacks of this approach is that file
handling has to be done manually. Furthermore, creating Parquet
files from a data stream is memory intensive. As the two men-
tioned issues are not critical for our use-case, yet the read and
analysis performance clearly outperformed other options, we de-
cided to base our analysis platform on the Parquet format and use
it as target for the data conversion, which is described next.

5.1.2 Data Conversion When a new external hard
disk is received from the power plant, the data is first converted
into a set of Parquet files. This is done such that one Parquet
file contains all the values for a subset of signals for one com-
plete day. This means that for each day, a small number of
Parquet files is created, each of them with reasonable file size
(up to = 1500 MB). These Parquet files use lossless dictionary
data compression to reduce the required data storage size on disk
(cf. Tab. 1). The sets of files are then organized into folders, such
that for every day of turbine data, there is one folder containing
the respective Parquet files.

5.2 Data Processing

Once the conversion is complete, the resulting Parquet files
serve as input for any further analysis step, requiring processing
options capable of handling Parquet files, while providing high
performance and ease-of-use for the end user. For this, we settled
on two tools, namely Apache Spark and the Python framework
pandas.

Copyright © 2019 by ASME

Apache Spark™, is “a unified analytics engine for large-

scale data processing” [7]. Spark has an easy SQL-like interface
for simple data filtering and processing, can work on streaming
data, and has an integrated machine learning library. It provides
a convenient interface for data stored in the Apache Parquet file
format, and can be used to filter data and perform simple data ag-
gregation. Its main advantage comes into play when data is too
big to be stored or processed by one machine: it can be deployed
on a cluster of machines, which all store data and perform com-
putations on all nodes in the cluster. However, it also works on a
single machine, which makes it a perfect tool for prototyping.

To complement the functionality of Spark for data analysis,
we use the Python framework pandas [8]. pandasisa /...] li-
brary providing high-performance, easy-to-use data structures
and data analysis tools for the Python programming language”
[9]. It can read Parquet files, perform simple data filtering and
aggregation tasks, but can also be used to create simple visual-
izations.

5.3 Visualization

Finally, we visualize the analysis results in order to be able
to understand, discuss and communicate them. Thanks to the use
of pandas and the availability of the Python ecosystem, we can
rely on a variety of tools and frameworks that provide visualiza-
tion capabilities. Probably the most widely used of such frame-
works is matplotlib [10], which provides substantial functional-
ity (and which the aforementioned plotting capabilities of pan-
das rely on). Additionally, we use seaborn [11], which provides
a high-level interface for matplotlib. Finally, we add ipyvol-
ume’s [12] interactive 3D-visualization to present our analysis
results to the end-user.

5.4 Driving the Pipeline

In order to be able to quickly and interactively apply all
steps of data analysis, we decided to use Jupyter Notebooks [13].
They make it possible to quickly develop and interactively exe-
cute Python code and with that enable us to make analysis and
visualization steps available to the end user in a tangible man-
ner. The resulting documents or notebooks perfectly combine
algorithmic descriptions as well as analysis results including so-
phisticated visualizations. This approach furthermore provides a
very valuable way of communicating and presenting results. As
a consequence, we also use it for prototyping new algorithms.

6 EXAMPLE DATA ANALYSES

In the following we highlight three of the exemplary analy-
ses that are enabled by our proposed framework. All results are
obtained on an Intel®) Xeon®) Gold 6136 CPU @ 3 GHz. As
the storage requirements are significant (and growing continu-
ously), we located all Apache Parquet data files on a Synology

NAS with sufficient storage capacity and, more importantly, a
10 GBit/s link to the server. On a much smaller data set, these
analyses would likely also have been possible with the intuitive
IfTA Trend [14] visualization and analysis software. However,
the analyses would have taken significantly longer to create, both
in terms of actual working hours as well as computational time
required for data processing.

6.1 Comparison of Workflows

First, we want to highlight the difference in work flow be-
tween the traditional, event based way of data analysis and the
new big data based analysis.

In the former case, the analysis is triggered by observing
some problem with a machine, e.g., some kind of turbine failure.
Often, this event based and manual approach is only done if there
is an immediate need for answering a specific question (" Why did
the compressor of my machine fail?” or ”Why did our combus-
tion monitoring system cause a turbine shutdown on date ...?”)
about a certain event, so the time window in question is known.
By utilizing an aggregated data set with a reduced resolution, the
data is limited to a manageable size and can be visualized inter-
actively. While not showing all details, in most cases, the user
can further narrow down the time window and iteratively load
and visualize time windows with higher resolution. Looking at a
list of appropriate signals (in the iteratively refined time window
in question) reveals insight into the data and allows the user to
draw conclusions.

Almost all of this analysis is performed with the help of in-
teractive visualization for several reasons: first, as the data of
only a limited time window is investigated, it is the most straight-
forward way to analyze data visually. In most cases, interactive
visualization is comfortably feasible performance-wise for the
limited amount of data that needs to be analyzed. In addition to
giving the user immediate cues on which parts of the data are
interesting, this also allows easy communication of the analysis
results. On the other hand, the time window of accessible data is
quite constrained, so there are few better alternatives to visual-
ization, as many of them would require a lot more data.

As soon as more data can be accessed, the analysis work
flow naturally changes. In addition to the old event based anal-
ysis requests (which can still be answered in the same way), in
many cases, there are now further questions that are not as spe-
cific ("Are all of the combustion cans working equally well?” or
”How much did the efficiency change over the lifetime of the ma-
chine and why?”). This means that they cannot be answered by
looking only at a certain time period of the data or an aggregated
view of the data. Hence, the pure visualization based way of data
analysis quickly breaks down for clear reasons.

Consequently, it is necessary to filter the data according to
some analysis driven criteria that is useful for the question to be
answered. These filter conditions range from simple manually

Copyright © 2019 by ASME

selected signal thresholds to automated, shape based signal se-
lection. Since the resulting data set might still be too large to be
visualized immediately, it needs further processing. Again, tech-
niques range from very simple data aggregation operations, to
statistical analysis or to more advanced approaches like machine
learning algorithms (cf. Section 7). Furthermore, it is often re-
quired to correlate different signals of the data set or intermedi-
ate analysis results with each other, which is also made feasible
through the use of Parquet files.

In the rest of this section, we present example data analysis
tasks that can now be carried out efficiently using our proposed
analysis architecture.

6.2 Example 1: Frequency Distribution Of Signals

In this first example, using our presented approach, we show
that loading data of roughly 18 months of two machines in full
resolution and performing analysis on this data is feasible in a
strikingly efficient way. The data has an average sampling rate of
almost 2 Hz, resulting in &~ 6.6 - 107 samples, or almost 800 MB
(8 byte timestamp + 4 byte value per sample). It should be noted
that when we would have loaded this amount of data using the
original row-oriented storage scheme, it would have been neces-
sary to read several dozens of TB from disk. Even with a band-
width of 10 GBit/s, this would have taken hours just for a single
turbine. Using our new analysis platform, loading and grouping
data for two turbines takes less than 15 seconds.

For the plot in Fig. 3, we group the electrical power out-
put data weekly and calculate the histogram for each week. We
then plot these histograms color-coded, visualizing the relative
frequency of the respective power output state for the respective
week.

6.3 Example 2: Comparison Of Signal Shape

Next, we look at the turbine speed data of the complete
database, but now use a different approach for data selection:
we search for a specific time series pattern shape. As we know
that a slower sampling rate is enough to detect the phenomena
we are interested in, we first subsample to 0.05 Hz and average
the values. We filter on the subsampled data by manually select-
ing prototype patterns (behavior of turbine speed for startup and
shutdown), and then find similar occurrences in the data. An ef-
ficient way to do so is, e.g., by calculating the distance profile
using the MASS algorithm by Mueen et al. [15]. Having the dis-
tance profile, we empirically determine an appropriate threshold
for the distance to get all matching time windows. After exclud-
ing false matches by examining the absolute turbine speed values
of startup and shutdown, we have reduced the data set to the time
windows of interest.

Lastly, we simply plot all the selected startup and shutdown
sequences into a single plot. As one can see in Fig. 4, most of the
time the behavior is indeed very similar. Only for the shutdown

Relative

Turbine 1 frequency
often

o
N
o

-
o
S
SV
i "

[«
o

THEL
{1

[=)]
o

Power Output
[MWATT]

N B
o o

o

Turbine 2

120

100

80 -
60

Power Output
[MWATT]

40

20

0

never
F\E IO - T LR - SRS S A (IR | IR

T g T T T e T e e ®

time [1 unit = 1 Week]

FIGURE 3.

roughly 18 months, grouped by week. The gray areas indicate times

Histogram of relative frequency of power output over

when no data is available. This analysis provides an overview over a
long time window and enables visual comparison of two gas turbines of
one power plant. Furthermore, it shows that during winter in central Eu-
rope, the power output is higher due to an increased electricity demand
and additional need for district heating (the respective power plant is
also operated for district heating mode).

process of the second turbine in our example data set, there are
larger deviations, which are easy to detect by the proposed visu-
alization.

Since the selection of the time windows is based on the
shape of the time series, it is not necessary to manually align
the data, this is a feature of the automatic selection of the time
window. As before, loading the 18 month of data takes a little
less than 10 seconds for the data of two turbines in our setup.
Actually selecting the relevant time windows by querying for the
signal shapes is also remarkably efficient: it takes less than 2
seconds for both machines and both patterns. It is worth noting
that this selection process is independent of the signal shape, as
the employed algorithm does not optimize with respect to data
values. There is no other end-to-end solution that we know of
which provides the capability of selecting real world gas turbine
sensor measurement data by signal shape.

Copyright © 2019 by ASME

Startup Shutdown

Turbine 1

Turbine 2

o
v
i
o
=
w
N
o
o
=
o

20 30
[min] [min]

FIGURE 4.
shutdown sequences for two machines of the same type. All extracted
sequences are automatically aligned and plotted on top of each other.
While the startups look very similar for both machines, the shutdown

Visualization of the shaft speed of multiple startup and

process of the second machine is subject to noticeable fluctuations.

6.4 Example 3: Visually Checking Signal Quality

In contrast to the previous examples, for this analysis, we
use the high frequency pressure sensor data, sampled at 25.6 kHz
and transformed to the frequency domain using an FFT of length
320 ms. In particular, we are looking at the time windows of all
the startups of one machine (cf. Fig. 4) and display the spectrum
as spectrogram plot over the time of a startup. By showing all
combinations of cans/baskets and startups, we get an overview of
the measurements of all signals and how the behavior of the mon-
itored values changes over time. Figure 5 shows an excerpt from
such an overview plot with only 25 such combinations. Even in
this small part of the overview, a person can effortlessly identify
the normal and abnormal behavior, e.g., realize that the signal
amplitude for basket 5 is always too low. Also, the signals for
Basket 2 and 3 stopped looking normal after startup 3. After in-
vestigation and discussion with the operator of the turbines, it
turned out that this was after a maintenance stop — likely a re-
assembly problem in the measurement chain. Looking only at a
few restricted frequency band values (as available in a reduced
data set in the state-of-the-art approach) instead of the full fre-
quency spectrum is often not sufficient.

Due to space limitations, we here limit ourselves to a grid of
5x5 startup spectra. We have created a similar plot for a turbine
with 14 cans and all startups that the data for this turbine cov-
ers. This results in a grid of 14x75 subplots. The resulting plot
was shown to the engineering staff of the turbine, which identi-
fied faulty sensors and ultimately led to the replacement of these
Sensors.

In this first ever approach to analyze spectrum data in a large
scale, the spectrum data for 14 cans requires ~ 672 MB of mem-
ory, which in our framework and due to the Parquet format, takes

Startup 1 Startup 2 Startup 3 Startup 4 Startup 5

0 10 200 10 200 10 200 10 200 10 20
[min] [min] [min] [min] [min]

FIGURE 5. Every subplot in this 5x5-grid represents the intensity
plot of the spectrum of one can/basket over the time of one startup
process (cf. Fig. 4) of the turbine. All subplots of one row show the
measurements of one particular combustion can, so one row reveals the
changes in process over time of that particular can. One column repre-
sents one startup process (ordered by time), so all plots in one column
show the same startup process for different cans. It can be clearly seen
that the data for the last can does not match the normal behavior (other
four cans, first three startups). For cans two and three, the measured data
changes significantly for startups four and five.

under 3 seconds to load.

6.5 Summary: New Capabilities

The presented analyses show only a small subset of possi-
bilities that can now be realized using our proposed end-to-end
analysis platform. Nevertheless, all of this already helps gas tur-
bine engineers and teams operating gas turbines to gain insight
into the instrumentation and operation of their machines. To the
best of our knowledge, no other end-to-end approach exists that
analyzes data at the given high time and frequency resolution for
time windows of more than one year.

7 ADVANCED ANALYSIS ALGORITHMS

All examples in the last section use rather simple filtering,
data processing and visualization techniques. This end-to-end
data analysis approach, based on an efficient file format and when
applied to long time windows of sensor measurement data, yields
very meaningful results close to interactive handling. However,
there is huge potential to also apply more advanced analysis algo-

Copyright © 2019 by ASME

rithms on top of the proposed analysis platform to further expand
the capabilities of the system. Thus, in this section, we present
a concept on what type of tools and algorithms might yield even
more insights into the data or make analysis more robust.

7.1 Algorithms

One weakness of all the examples presented in Section 6
is the need for human interpretation of the results. While often
the only solution as user expertise is needed, it is feasible only
for a small number of machines or when analyses are only per-
formed rarely. When scaling to a fleet of machines or demanding
regularly repeating analysis, the required ability to interpret the
results quickly becomes the bottleneck if performed by a human.
Due to recent advances in machine learning, some of these po-
tential analysis tasks can be automated, especially those that do
not require much creativity. In particular, repetitive tasks like
anomaly detection or operating mode classification can be easily
performed by algorithms trained with historical data.

Anomaly detection algorithms range from simple threshold
based algorithms to sophisticated statistical or neural network
based machine learning algorithms. IfTA’s FleetMonitor soft-
ware already offers the basic automated analysis capabilities for
a centralized and automated analysis of the measurements of a
fleet of gas turbines. Many of the advanced algorithms are im-
plemented in, e.g., the scikit-learn library [16]. Other examples
using neural networks include auto encoders for anomaly detec-
tion or recurrent neural networks for classification of behavior in
time series.

Regarding time series analysis, similar to how we select sig-
nals of a specific shape to examine the startup and shutdown be-
havior (cf. Fig. 4), it is interesting to detect repeating patterns
(motifs) and novelty/anomalies (discords) in the sensor time se-
ries measurements. Furthermore, it is interesting to segment and
classify the time series. Using the Matrix Profile data structures
developed by Keogh et al. [17], all of this is now computationally
feasible [18].

7.2 Data and Meta-Data Quality

One aspect that has not been covered for all of the above-
mentioned analysis techniques, but which is essential for good
analysis results, is data quality. Concerning measurement values
themselves, problems might be in each stage of the measurement
chain, starting with the analogue path of this chain, which con-
sists of different kinds of sensors, charge amplifiers, cables and
connectors between the components. In each of these compo-
nents, we have to deal with gradual degradation over their life-
time caused by wear (frequent temperature changes, heat, physi-
cal stress). Besides that, abrupt changes in signal quality are also
an issue, e.g., after maintenance stops when turbine engineers
made mistakes while reassembling the measurement chain (cf.
Fig. 5).

Similarly, we must also carefully address problems in the
digital section of the chain. Different digital systems have to
work together reliably in order to have one integrated database of
sensor measurement values. When one of this systems is down or
does not work correctly, no or even wrong measurement values
might be the consequence. In addition to that, having consistent
timestamps for data generated by different systems is also an is-
sue that has to be taken care of.

Beyond that, there are problems that do not directly concern
the actual sensor measurements, but still are of great importance
for an analysis platform. These meta-problems cover the descrip-
tion of data and how it changes over time as well as the assess-
ment of signal quality discussed in the previous paragraph. It
might be necessary to exclude time windows where some signals
are missing or have faulty signal values, so data for such time
windows might need to be annotated as such.

Furthermore, over time, sensor measurements or analysis
results might be added or removed from the set of signals.
Moreover, configuration parameters (e.g., sampling frequency)
might be changed, and thus, the semantic of analysis results also
slightly changes. When such a change in data schema or con-
figuration happens, this might complicate the problem, as data
analysis now also has to take care of these kinds of changes in
the data.

8 CONCLUSIONS & FUTURE WORK

When IfTA was founded in 1996, it was virtually impossible
to store, transfer and process the data returned from a machine.
However, in the last decade, storage systems and computers have
evolved considerably and cloud computing has become a game
changer and has made it possible to cope with an ever growing
amount of high resolution data.

We presented an end-to-end approach for a large scale sen-
sor measurement analysis platform. Meaningful examples that
would not have been possible with currently available solutions
demonstrate the feasibility of our approach for the complete data
path from sensor value acquisition to visualization of analysis
results. Real-world actions in response to one of our analysis re-
sults show that the insights can provide direct benefits to machine
operators at the respective power plants.

The traditional approach of sending an external hard disk ap-
parently has an unacceptable high latency and does not scale for
a complete fleet of turbines. Consequently, in future work, we
plan to further optimize data storage and tackle the data transfer
challenge by improving data compression and exploiting lossy
compression algorithms. Ideally, data is already transformed into
a format suited for analysis when it is generated at the power
plant. Furthermore, distributed data storage and processing will
make large scale fleet monitoring viable and with that open a
door to a new generation of monitoring, analysis, and mainte-
nance scheduling in the light of digitalization.

Copyright © 2019 by ASME

ACKNOWLEDGMENT

This work is funded by the research project Optimierung

von Gasturbinen mit Hilfe von Big Data (AZ-1214-16) by Bay-
erische Forschungsstiftung. Furthermore, we thank Stadtwerke
Miinchen GmbH providing us the data that the analyses in this
paper are based on.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

(10]

(11]

(12]

[13]

IfTA GmbH, 2018. IfTA OMDS - Oscillation Mon-
itoring & Diagnostics System. Last accessed Oc-
tober, 2018. URL https://www.ifta.com/en/
products/automation/omds.

Blalock, D., Madden, S., and Guttag, J., 2018. “Sprintz:
Time Series Compression for the Internet of Things”. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., 2(3),
Sept., pp. 93:1-93:23.

Gorenflo, C., Golab, L., and Keshav, S., 2017. “Managing
Sensor Data Streams: Lessons Learned from the WeBike
Project”. In Proceedings of the 29th International Con-
ference on Scientific and Statistical Database Management,
SSDBM ’17, ACM, pp. 1:1-1:11.

InfluxData, Inc., 2018. InfluxDB. Last accessed Octo-
ber, 2018. URL https://docs.influxdata.com/
influxdb/.

Apache Software Foundation, 2018. Apache Parquet. Last
accessed October, 2018. URL https://parquet.
apache.org/.

Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivaku-
mar, S., Tolton, M., and Vassilakis, T., 2010. “Dremel: In-
teractive Analysis of Web-Scale Datasets”. In Proc. of the
36th Int’l Conf on Very Large Data Bases, pp. 330-339.
Apache Software Foundation, 2018. Apache Spark.
Last accessed October, 2018. URL https://spark.
apache.org/.

McKinney, W., 2011. “pandas: a foundational python li-
brary for data analysis and statistics”. PyHPC.

Pandas, 2018. Python Data Analysis Library. Last accessed
October, 2018. URL https://parquet.apache.
org/.

Hunter, J. D., 2007. “Matplotlib: A 2d graphics environ-
ment”. Computing In Science & Engineering, 9(3), pp. 90—
95.

Michael Waskom, 2018. seaborn: statistical data visu-
alization. Last accessed October, 2018. URL https:
//seaborn.pydata.org/.

Maarten Breddels, 2018. ipyvolume. Last ac-
cessed October, 2018. URL https://github.com/
maartenbreddels/ipyvolume.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bus-
sonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J.,
Corlay, S., Ivanov, P, Avila, D., Abdalla, S., and Willing,

10

(14]

[15]

(16]

(17]

(18]

C., 2016. “Jupyter Notebooks — a publishing format for re-
producible computational workflows”. In Positioning and
Power in Academic Publishing: Players, Agents and Agen-
das, F. Loizides and B. Schmidt, eds., IOS Press, pp. 87 —
90.

IfTA GmbH, 2018. Measurement Data Visualization
& Analysis with IfTA Trend. Last accessed Oc-
tober, 2018. URL https://www.ifta.com/en/
products/analysis/trend.

Mueen, A., Zhu, Y., Yeh, M., Kamgar, K., Viswanathan,
K., Gupta, C., and Keogh, E., 2017. The fastest similar-
ity search algorithm for time series subsequences under eu-
clidean distance, August. http://www.cs.unm.edu/
~mueen/FastestSimilaritySearch.html.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E., 2011.
“Scikit-learn: Machine Learning in Python”. Journal of
Machine Learning Research, 12, pp.2825-2830.

Yeh, C. C. M., Zhu, Y., Ulanova, L., Begum, N., Ding,
Y., Dau, H. A., Silva, D. F., Mueen, A., and Keogh, E.,
2016. “Matrix profile i: All pairs similarity joins for time
series: A unifying view that includes motifs, discords and
shapelets”. In 2016 IEEE 16th International Conference on
Data Mining (ICDM), pp. 1317-1322.

Zhu, Y., Zimmerman, Z., Senobari, N. S., Yeh, C. C. M.,
Funning, G., Mueen, A., Brisk, P., and Keogh, E., 2016.
“Matrix profile ii: Exploiting a novel algorithm and gpus to
break the one hundred million barrier for time series motifs
and joins”. In 2016 IEEE 16th International Conference on
Data Mining (ICDM), pp. 739-748.

Copyright © 2019 by ASME

https://www.ifta.com/en/products/automation/omds
https://www.ifta.com/en/products/automation/omds
https://docs.influxdata.com/influxdb/
https://docs.influxdata.com/influxdb/
https://parquet.apache.org/
https://parquet.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://github.com/maartenbreddels/ipyvolume
https://github.com/maartenbreddels/ipyvolume
https://www.ifta.com/en/products/analysis/trend
https://www.ifta.com/en/products/analysis/trend
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

	INTRODUCTION
	DATA PIPELINE CHALLENGES
	Data Storage
	Data Transfer
	Security Considerations
	Required Technical Expertise

	APPROACH AND SETUP
	STORAGE CONCEPTS
	CREATING AN END-TO-END WORK FLOW
	Data Acquisition and Storage
	Data Storage
	Data Conversion

	Data Processing
	Visualization
	Driving the Pipeline

	EXAMPLE DATA ANALYSES
	Comparison of Workflows
	Example 1: Frequency Distribution Of Signals
	Example 2: Comparison Of Signal Shape
	Example 3: Visually Checking Signal Quality
	Summary: New Capabilities

	ADVANCED ANALYSIS ALGORITHMS
	Algorithms
	Data and Meta-Data Quality

	CONCLUSIONS & FUTURE WORK

